Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations

نویسندگان

  • M. Huntemann
  • G. Heygster
  • L. Kaleschke
چکیده

Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anticorrelation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50 are found and used to develop an empirical retrieval algorithm sensitive to thin sea ice up to 50 cm thickness. The algorithm shows high correlation with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze-up period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period

[1] The Microwave Imaging Radiometer using Aperture Synthesis (MIRAS) on board the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission for the first time measures globally Earth’s radiation at a frequency of 1.4 GHz (L-band). It had been hypothesized that L-band radiometry can be used to measure the sea ice thickness due to the large penetration depth in the sea ice me...

متن کامل

A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice

In preparation for the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, we investigated the potential of L-band (1.4 GHz) radiometry to measure sea-ice thickness. Sea-ice brightness temperature was measured at 1.4 GHz and ice thickness was measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research...

متن کامل

Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data

The microwave interferometric radiometer of the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a sno...

متن کامل

Arctic sea ice concentration observed with SMOS during summer

The launch of the Soil Moisture and Ocean Salinity (SMOS) mission, in 2009, marked the dawn of a new type of space-based microwave observations. Although the mission was originally conceived for hydrological and oceanographic studies [3,4], SMOS is also making inroads in the cryospheric sciences by measuring the thin ice thickness [5,6]. SMOS carries an L-band (1.4 GHz), passive interferometric...

متن کامل

On the Retrieval of Sea Ice Thickness and Snow Depth using Concurrent Laser Altimetry and L-Band Remote Sensing Data

The accurate knowledge of sea ice parameters, including sea ice thickness and snow depth over the sea ice cover, are key to both climate studies and data assimilation in operational forecasts. Large-scale active and passive remote sensing is the basis for the estimation of these parameters. In traditional altimetry or the retrieval of snow depth with passive microwave sensing, although the sea ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014